Polifonic Documentation
  • Sign in
  • Sign up
  • Contents
    • Syntax
    • Supported LaTeX commands
    • Examples
    • Other examples
  • en
    • en - English

Syntax

Syntax

  • Typography
  • Links
  • Lists
  • Files (media)
  • No formatting
  • Alerts
  • Boxes (Panels)
  • Special characters
  • Emojis
  • Labels
  • FontAwesome icons
  • Acronyms
  • Code
  • Console output
  • Graphs
  • Math formulas
  • Page index
  • Collapsible elements
  • Footnotes
  • Common attributes

Contents

Contents

  • Home page
  • Wiki 101
  • Creating content
  • Syntax reference
  • Managing your wiki

Math formulas

You can include math formulas inside your wiki pages, like this:

or even inline (inside the body of your text, like so:

We know is indeterminant.

Syntax

The general syntax for including a math formula is:

%%<math>%%LaTex math formula%%</math>%%

for inline formulas, and:

%%<math block>%%LaTex math formula%%</math>%%

for block formulas.

The syntax for math formulas inside the %%<math>%%...%%</math>%% tag is LaTeX.

Supported LaTeX commands

To render LaTeX math formulas, Polifonic uses the excellent KaTex library, so the LaTeX commands supported are those supported by KaTeX. The list of supported commands is available here. Please note that katex supports a smaller set of features than MathJax. Comparison between the 2 libraries can be found here.

Please note that Polifonic is neither related to, nor endorsed by, KaTex, MathJax nor LaTex.

Examples

<math block>c = \pm\sqrt{a^2 + b^2}</math>

<math block>\forall x \in X, \quad \exists y \leq \epsilon</math>

<math block>\cos (2\theta) = \cos^2 \theta - \sin^2 \theta</math>

<math block>\lim_{x \to \infty} \exp(-x) = 0</math>

<math block>\frac{3}{7}</math>

Take <math>\frac{1}{2}</math> cup of sugar, ...

<math block>3\times\frac{1}{2}=1\frac{1}{2}</math><math block>\frac{3}{7}</math>

Take cup of sugar,

…

Take <math>{}^1/_2</math> cup of sugar, ...

<math block>3\times{}^1/_2=1{}^1/_2</math>

Take cup of sugar,

…

<math block> x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_4} } } } </math>

Other examples

The examples below are all taken from the Katex and MathJax comparison demo page.

Repeating fractions

Summation notation

Sum of a series

Product notation

Inline math

And here is some in-line math: , followed by some more text.

Greek letters

Arrows

Symbols

Calculus

Lorenz equations

Alignment is not supported by KaTex.

Cross products

Not working quite well in KaTex

Accents

Not working in Katex

Stretchy brackets

Evaluation at limits

Case definitions

Maxwell's equations

Statistics

Definition of combination:

Fractions on fractions

n-th root

Matrices

Punctuation

This page was modified on 5 Nov 2015 at 1:17 PM.

Source

====== Math formulas ====== You can include math formulas inside your wiki pages, like this: <math block>a^2 + b^2 = c^2</math> <math block>f(x) = \int_{-\infty}^\infty \hat f(\xi)\,e^{2 \pi i \xi x} \,d\xi</math> or even inline (inside the body of your text, like so: We know <math>\frac {1}{0}</math> is indeterminant. ===== Syntax ===== The general syntax for including a math formula is: ''%%<math>%%//LaTex math formula//%%</math>%%'' for inline formulas, and: ''%%<math block>%%//LaTex math formula//%%</math>%%'' for block formulas. The syntax for math formulas inside the ''%%<math>%%...%%</math>%%'' tag is [[https://www.latex-project.org/|LaTeX]]. ===== Supported LaTeX commands ===== To render LaTeX math formulas, Polifonic uses the excellent [[http://khan.github.io/KaTeX/|KaTex]] library, so the LaTeX commands supported are those supported by KaTeX. The list of supported commands is available [[https://github.com/Khan/KaTeX/wiki/Function-Support-in-KaTeX|here]]. Please note that katex supports a smaller set of features than MathJax. Comparison between the 2 libraries can be found [[http://www.intmath.com/cg5/katex-mathjax-comparison.php|here]]. <alert warning>Please note that Polifonic is neither related to, nor endorsed by, KaTex, MathJax nor LaTex.</alert> ===== Examples ===== <col sm:6> %%<math block>c = \pm\sqrt{a^2 + b^2}</math>%% </col> <col sm:6> <math block>c = \pm\sqrt{a^2 + b^2}</math> </col> <col sm:6> %%<math block>\forall x \in X, \quad \exists y \leq \epsilon</math>%% </col> <col sm:6> <math block>\forall x \in X, \quad \exists y \leq \epsilon</math> </col> <col sm:6> %%<math block>\cos (2\theta) = \cos^2 \theta - \sin^2 \theta</math>%% </col> <col sm:6> <math block>\cos (2\theta) = \cos^2 \theta - \sin^2 \theta</math> </col> <col sm:6> %%<math block>\lim_{x \to \infty} \exp(-x) = 0</math>%% </col> <col sm:6> <math block>\lim_{x \to \infty} \exp(-x) = 0</math> </col> <col sm:6> %%<math block>\frac{3}{7}</math>%% </col> <col sm:6> <math block>\frac{3}{7}</math> </col> <col sm:6> %%Take <math>\frac{1}{2}</math> cup of sugar, ...%% %%<math block>3\times\frac{1}{2}=1\frac{1}{2}</math><math block>\frac{3}{7}</math>%% </col> <col sm:6> Take <math>\frac{1}{2}</math> cup of sugar, ... <math block>3\times\frac{1}{2}=1\frac{1}{2}</math> </col> <col sm:6> %%Take <math>{}^1/_2</math> cup of sugar, ...%% %%<math block>3\times{}^1/_2=1{}^1/_2</math>%% </col> <col sm:6> Take <math>{}^1/_2</math> cup of sugar, ... <math block>3\times{}^1/_2=1{}^1/_2</math> </col> <col sm:6> %%<math block> x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_4} } } } </math>%% </col> <col sm:6> <math block> x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_4} } } } </math> </col> ===== Other examples ===== The examples below are all taken from the [[http://www.intmath.com/cg5/katex-mathjax-comparison.php|Katex and MathJax comparison demo]] page. ==== Repeating fractions ==== <math block>\frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }</math> ==== Summation notation ==== <math block>\left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)</math> ==== Sum of a series ==== <math block>\displaystyle\sum_{i=1}^{k+1}i</math> <math block>\displaystyle= \left(\sum_{i=1}^{k}i\right) +(k+1)</math> <math block>\displaystyle= \frac{k(k+1)}{2}+k+1</math> <math block>\displaystyle= \frac{k(k+1)+2(k+1)}{2}</math> <math block>\displaystyle= \frac{(k+1)(k+2)}{2}</math> ==== Product notation ==== <math block> \displaystyle 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \displaystyle \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \displaystyle\text{ for }\lvert q\rvert < 1. </math> ==== Inline math ==== And here is some in-line math: <math>k_{n+1} = n^2 + k_n^2 - k_{n-1}</math>, followed by some more text. ==== Greek letters ==== <math block>\Gamma\ \Delta\ \Theta\ \Lambda\ \Xi\ \Pi\ \Sigma\ \Upsilon\ \Phi\ \Psi\ \Omega</math> <math block>\alpha\ \beta\ \gamma\ \delta\ \epsilon\ \zeta\ \eta\ \theta\ \iota\ \kappa\ \lambda\ \mu\ \nu\ \xi \ \omicron\ \pi\ \rho\ \sigma\ \tau\ \upsilon\ \phi\ \chi\ \psi\ \omega\ \varepsilon\ \vartheta\ \varpi\ \varrho\ \varsigma\ \varphi</math> ==== Arrows ==== <math block>\gets\ \to\ \leftarrow\ \rightarrow\ \uparrow\ \Uparrow\ \downarrow\ \Downarrow\ \updownarrow\ \Updownarrow </math> <math block>\Leftarrow\ \Rightarrow\ \leftrightarrow\ \Leftrightarrow\ \mapsto\ \hookleftarrow</math> <math block>\leftharpoonup\ \leftharpoondown\ \rightleftharpoons\ \longleftarrow\ \Longleftarrow\ \longrightarrow</math> <math block>\Longrightarrow\ \longleftrightarrow\ \Longleftrightarrow\ \longmapsto\ \hookrightarrow\ \rightharpoonup</math> <math block>\rightharpoondown\ \leadsto\ \nearrow\ \searrow\ \swarrow\ \nwarrow</math> ==== Symbols ==== <math block>\surd\ \barwedge\ \veebar\ \odot\ \oplus\ \otimes\ \oslash\ \circledcirc\ \boxdot\ \bigtriangleup</math> <math block>\bigtriangledown\ \dagger\ \diamond\ \star\ \triangleleft\ \triangleright\ \angle\ \infty\ \prime\ \triangle</math> ==== Calculus ==== <math block>\int u \frac{dv}{dx}\,dx=uv-\int \frac{du}{dx}v\,dx</math> <math block>f(x) = \int_{-\infty}^\infty \hat f(\xi)\,e^{2 \pi i \xi x}</math> <math block>\oint \vec{F} \cdot d\vec{s}=0</math> ==== Lorenz equations ==== Alignment is not supported by KaTex. <math block>\dot{x} = \sigma(y-x)</math> <math block>\dot{y} = \rho x - y - xz</math> <math block>\dot{z} = -\beta z + xy</math> ==== Cross products ==== === Not working quite well in KaTex === <math block> \mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 \end{vmatrix} </math> ==== Accents ==== <math block>\hat{x}\ \vec{x}\ \ddot{x} </math> === Not working in Katex ==== <math block>\overrightarrow{AB}</math> <math block>A\underset{0^{\circ}C }{\overset{100^{\circ}C}{\rightleftarrows}}B</math> ==== Stretchy brackets ==== <math block>\left(\frac{x^2}{y^3}\right)</math> ==== Evaluation at limits ==== <math block>\left.\frac{x^3}{3}\right|_0^1</math> ==== Case definitions ==== <math block>f(n) = \begin{cases} \frac{n}{2}, & \text{if } n\text{ is even} \\ 3n+1, & \text{if } n\text{ is odd} \end{cases}</math> ==== Maxwell's equations ==== <math block> \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} = \frac{4\pi}{c}\vec{\mathbf{j}}</math> <math block> \nabla \cdot \vec{\mathbf{E}} = 4 \pi \rho </math> <math block> \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} = \vec{\mathbf{0}} </math> <math block> \nabla \cdot \vec{\mathbf{B}} = 0 </math> ==== Statistics ==== Definition of combination: <math block>\frac{n!}{k!(n-k)!} = {^n}C_k</math> <math block>{n \choose k}</math> ==== Fractions on fractions ==== <math block>\frac{\frac{1}{x}+\frac{1}{y}}{y-z}</math> ==== n-th root ==== <math block>\sqrt[n]{1+x+x^2+x^3+\ldots}</math> ==== Matrices ==== <math block>\begin{pmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{pmatrix}</math> <math block> \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} </math> ==== Punctuation ==== <math block>f(x) = \sqrt{1+x} \quad (x \ge -1)</math> <math block>f(x) \sim x^2 \quad (x\to\infty)</math> <math block>f(x) = \sqrt{1+x}, \quad x \ge -1</math> <math block>f(x) \sim x^2, \quad x\to\infty</math> <math block></math> <math block></math> <math block></math>
This website uses cookies to ensure you get the best browsing experience.